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ABSTRACT

This paper describes the experiments carried out by the
UC3M team for the TRECVID 2010 high-level feature ex-
traction task. In our previous participations in TRECVID,
we have developed a modular system to facilitate the testing
of several functionalities. This year we have selected a sim-
ple system configuration and we have added some elements
expected to provide an additional advantage. For instance,
1) different kinds of histogram based features have been in-
cluded in the system, both with a late fusion scheme and with
a spatial pyramid matching configuration; 2) according to the
nature of the low level features, different kernels have been
used to train a set of non-linear SVMs; and, 3) to combine
the outputs of the trained SVMs, two different fusion strate-
gies have been taken into account, an average combination
and a linear 1-norm SVM. Additionally, one of our runs ex-
ploits the relationships between the different categoriesby
taking into account the provided taxonomy relationships, thus
modifying the final system output for some categories. To
check the advantages provided by these new system elements,
we have submitted the following runs for their evaluation in
TRECVID 2010:

• RUN 1 (“F A UC3M 1 1” ): this run is the baseline sys-
tem configuration, where the local features have been
included with a Spatial Pyramid Matching scheme and
an average combination of the SVMs outputs has been
considered.

• RUN 2 (“F A UC3M 2 2” ): this run has the same con-
figuration as RUN 1, but histogram based features have
been included with a late fusion configuration.

• RUN 3 (“F A UC3M 3 3” ): this run replicates the con-
figuration of RUN 2, but a 1-norm SVM has been used
for the late fusion stage.

• RUN 4 (“F A UC3M 4 4” ): this last run modifies the
final output of RUN 3 for a subset of classes according
to the provided taxonomy relationships.

This work is part of the i3media Project (CDTI 2007 1012) and is par-
tially funded by the Centro para el Desarrollo TecnológicoIndustrial (CDTI),
within the Ingenio 2010 Program.

The four submitted runs have achieved average InfAP val-
ues from0.0457 (RUN 1) to0.0528 (RUN 3). Thus, our best
run performed24 out of all87 submitted runs for this task.

1. INTRODUCTION

During our previous participations in the TRECVID high-
level feature extraction (HFE) competition, we have analyzed
different configuration alternatives for the components ofa
modular system; for instance, we have studied the advantages
provided by different classification technologies, validation
criteria and different fusion strategies. This year, we keep
some of the elements that worked best during previous years,
using a HFE system consisting of three stages: (1) a low level
feature extraction layer, (2) a set of non-linear SVMs to carry
out the supervised learning step and (3) a final fusion stage.
To improve the performance of the system, this year we have
incorporated and analyzed the performance of some new ele-
ments, namely:

• Local features: apart from typical Keyframe and Grid
low-level features, this year we have considered a wider
set of local features. Concretely, we have extracted
SIFT descriptors over three different kind of local re-
gions: circular patches in a dense grid (DSIFT), and
salient affine regions using the Harris Affine Detector
(HAR-SIFT) and the Hessian Detector (HES-SIFT).
Furthermore, a Multi-resolution analysis with spatial
grids of 1x1, 1x3 and 3x1 has been included in the
system.

• Spatial Pyramid Matching: in addition to the basic ap-
proach (one histogram-one classifier), we have also ex-
perimented with a Spatial Pyramid approach that com-
putes kernels at each resolution and fuses them using a
kernel weighting technique.

• Kernel selection: to train the non-linear SVMs we have
considered two kinds of kernels according to the low
level features which are used as the SVMs inputs. In
particular, a Histogram Intersection Kernel [1] has been
used for the histogram based features and a Gaussian
Kernel for the remaining low level features.



• Fusion scheme: Late fusion of SVM outputs is carried
out by using linear combinations following one of these
two possibilities: either we use the average of all SVM
outputs, or we recur to a linear 1-norm SVM. The lat-
ter scheme provides a sparse solution, so an automatic
feature selection process is implicitly carried out during
the learners fusion.

• Taxonomy: finally, we have used the given taxonomy
for the original130 categories, including a final step
which changes the order of the clips classified as posi-
tive for a given category using the outputs of some other
related categories.

Among the different trained runs, we have selected the
four that provided better results (according to our validation
tests) and, at the same time, allowed us to check the advan-
tages or disadvantages provided by the above elements.

The remainder of this paper is organized as follows: The
next section presents the Low Level Features that have been
extracted from the video data. In Section 3, we describe in de-
tail the different configurations of our system and we present
the four submitted runs. Next, experimental results are ana-
lyzed in Section 4. Finally, Section 5 summarizes the conclu-
sions.

2. LOW LEVEL FEATURE EXTRACTION

This section describes the set of low-level features that has
been included in our concept detection system. In general,
the low-level descriptors have been organized in three lev-
els or granularities, namely (a)Keyframe Level features, that
describe image content on each keyframe, (b)Regular Grid
features, which apply some kind of spatial regionalization by
dividing the image into a regular grid, and (c)Local features
that detect and describe specially discriminant areas in im-
ages. Next, we provide a brief description of each of them.

2.1. Keyframe level features

Each keyframe extracted from the video content is described
by means of several still image descriptors. To reduce the
number of learning machines in our system, we have designed
an early fusion stage that combines features following a sim-
ple categorization:color featuresand texture features. This
fusion stage simply concatenates features using equal weights
and, then, normalizes each element on the resulting vector to
have zero mean and unit variance. The Color vector include
several MPEG-7 color descriptors (Color Structure, Scalable
Color and Color Layout) and Color Correlograms and Au-
toCorrelograms, whereas the Texture vector is composed of
other MPEG-7 descriptors (Homogeneous Texture, Texture
Browsing), as well as Gray-Level Co-Ocurrence Matrices,
Gabor Wavelets and Edge Histograms.

2.2. Regular Grid features

Each keyframe has been divided using a regular grid of type
4x3. Then, each cell has been annotated using two compact
descriptors:Color Moments(CM) (up to 3rd-order) in HSV
color space, andGabor Wavelets(GW) with two scales and
four orientations.

2.3. Local Features. The bag-of-words model

Bag-of-Words (BoW) models have shown exceptional perfor-
mance and constitute the most prevalent approach for concept
detection in audiovisual content. These models were initially
proposed for text retrieval and later used in computer vision,
where the traditional “document” became an image and the
“words” were associated with visual words that describe the
content of local patches. BoW models make a simplifying
assumption on the data distribution in a image, which is sim-
ply considered as an unordered collection of visual words that
describe the appearance of local regions. Good examples of
BoW models can be found in both discriminative [2] [3] and
generative frameworks [4] [5]. Originally, these models did
not take into account the spatial location of the visual words in
an image, what, obviously, limits their performance. More re-
cently, some spatial constraints have been proposed for BoW
models to benefit from spatial discrimination to some extent.
In particular, the discriminative approach called SpatialPyra-
mid Matching ([6],[7],[8]) attains improved classification per-
formance by computing image histograms at different spatial
levels and a weighted kernel over each level.

We have experimented with several parameters of the tra-
ditional bag-of-words model. Next we provide a brief de-
scription of every module in our bag-of-words approach:

• Detection of local regions: Two affine covariant region
detectors have been used to detect salient regions in
each image: Hessian Affine Detector and Harris Detec-
tor. The interested reader is referred to [9] for a com-
plete description of these detectors. Moreover, a dense
grid with two scales has also been used, which yielded
overlapped circular patches with radius 8, and 16, orga-
nized in a regular 6 pixel spaced grid.

• Local feature extraction: Local features are extracted
from each local patch in every image. The texture ap-
pearance of each region is described by means of a
128-dimensional SIFT descriptor [10]. It is notewor-
thy that each detector (Harris, Hessian and Dense Grid)
provides its particular set of descriptors per image that
are treated separately by the bag-of-words model.

• Visual Vocabulary: Once the local features have been
extracted, a bag-of-words model is computed for each
detector. The k-means clustering algorithm has been
used to compute theM codewords that best represent
the local features of the reference image set. In our



case, a vocabulary size ofM = 4000 has been used for
each detector. Following the aforementioned approach
three visual vocabularies have been computed to repre-
sent words coming from each of the detectors.

• Histograms of visual words: Every image is then
vector-quantized so that each region descriptor is as-
signed to its closest codeword and a normalized his-
togram of words is computed. In particular, we have
employed a soft-assignment technique that computes a
gaussian kernel between a word and each of the code-
words and increments the positions of the histogram
with the obtained values.

• Multi-resolution analysis: Finally, each image is ex-
plored at several spatial granularities so that histograms
at different spatial levels are generated. In particular,
we have computed histograms using the following
grids: 1x1, 1x3 and 3x1. Furthermore, a spatial pyra-
mid kernel has been also utilized to perform a multi-
resolution analysis of the words distribution along the
image.

Hence, the combination of three detectors and three spa-
tial grids gives place to nine low-level descriptors to which
we should add the spatial pyramid kernel as potential inputs
for the classification stage.

3. HIGH LEVEL FEATURE EXTRACTION

In this section we are going to describe how the different runs
have been created. As we have already explained, we have
considered, as our starting point, a modular system architec-
ture made up of three processing steps: (1) a low level feature
extraction layer, (2) a set of supervised learning machines,
and (3) a final fusion stage. This year we have done with-
out a feature selection stage, but as we will show later, one
of the selected fusion schemes is able to automatically carry
out the feature selection process. Finally, we will presentthe
four runs submitted to TRECVID, indicating which elements
differentiate one run from the others.

3.1. Early/late fusion of low-level features

Once all the low level features have been extracted from the
video data (as described in Section 2), they are employed to
train an SVM which solves, for each category, the desired
classification problem. Keyframe and Grid features have been
directly used as inputs to the classifiers; however, the his-
tograms of local features have been grouped according to two
different architectures (see Figure 1):

• Late fusion: each feature becomes an input of a differ-
ent SVM.

(a)

(b)

Fig. 1. General system architecture when local features are
employed in a late fusion scheme (Subfigure (a)) and in Spa-
tial Pyramid Matching scheme (Subfigure (b)).

• Early fusion: all local features described in Section 2.3
have been grouped to become the input of a unique
SVM. This scheme corresponds to the well-known
Spatial Pyramid Matching ([6, 7, 8]) which attains im-
proved classification performance by computing image
histograms at different spatial levels and a weighted
kernel over each level.

3.2. SVMs classifiers

After the low level feature extraction, the next stage of our
system consists of a set of non-linear SVMs trained with the
LIBSVM toolbox [11]. These SVMs have been trained with a
maximum of8000 data, using as many positive data as avail-
able, and allowing a maximum of 10 negative instances per
each positive one. The free SVM parameters have been ad-
justed with a cross-validation procedure using the Average
Precision (AP) as the validation criterion.

When Keyframe or Grid low level features are considered
as SVM inputs, the Gaussian kernel is used,

K(xi, xj) = exp

(

−
||xi − xj ||

2

2σ2

)

σ being the kernel width to be adjusted during the SVM cross-
validation process.



However, when dealing with local features, it can be more
useful to consider other kernels. In particular, due to the fact
that local descriptors are histogram based features, it seems
reasonable to use histogram-based kernels, such as the His-
togram Intersection Kernel [1]:

K(xi, xj) =
1

d

d
∑

k=1

min
{

x
(k)
i , x

(k)
j

}

whered is the total number of bins of histogramsxi andxj

(i.e., d is the dimension of local descriptors). This kernel
has the additional advantage of being computationally faster
than the Gaussian one. Furthermore, it has no parameters to
be adjusted, what implies also important computational sav-
ings during the cross-validation. The overall CPU-time sav-
ing due to the previous kernel properties are specially conve-
nient when dealing with high dimensional features, such as
histograms of local descriptors.

3.3. Fusion stage

Finally, the SVM outputs have been linearly combined in or-
der to obtain the global system output. To carry out this com-
bination, we have considered two schemes:

• An average combination of all SVM outputs: in this
case the final system output,f(x), is obtained by di-
rectly averaging SVMs outputs, i.e.,

f(x) =
1

T

T
∑

t=1

ot(x)

whereot(x) is the output of thet-th SVM for the in-
put low level featurex. Note that according to previous
results reported in the TRECVID HFE task, and also
according to our own experiments, more sophisticated
trainable linear combinations do not provide additional
gains with respect to the very simple average of all out-
puts.

• A sparse linear SVM: this combination scheme uses a
linear 1-norm SVM [12] to obtain a set of weights to
combine the SVMs outputs. In this way, the final sys-
tem output is given by:

f(x) = wT o(x) + b

wherew = [w1, . . . , wT ]
T is the combination weight

vector,o(x) = [o1(x), . . . , oT (x)]
T is a vector contain-

ing the SVMs outputs andb is the bias term. To learn
these parameters, in such a way that a maximum margin

solution is provided, the 1-nom SVM solves the follow-
ing optimization problem:

min ‖w‖1 +
C

N

N
∑

i=1

ξi

s.t. yi

(

w
T o(xi) + b

)

≥ 1 − ξi; i = 1, . . . , N

ξi ≥ 0; i = 1, . . . , N

(1)
where slack variablesξi are introduced to allow the
SVM outputs for some training data to be misclassified
or to lie inside the classifier margin,C is a constant that
controls the tradeoff between the structural and empiri-
cal risk terms, andyi is the label (desired output) asso-
ciated to training patternxi.

The main difference between this formulation and a
classical 2-norm SVM, relies on the fact that an 1-norm
regularization term has to be minimized. This regu-
larizer presents singularity points whenever any of the
components ofw is zero, what tends to nullify some
of the solution weights, thus favoring sparse solutions.
Therefore, this fusion scheme implicitly provides a fea-
ture selection criterion, since all SVMs in the first stage
whose associated weight is set to zero at the combina-
tion stage by the 1-norm SVM can be removed from the
system.

3.4. Sorting out positive clips using a predefined taxon-
omy

One of the main novelties of this year’s task is the availabil-
ity of a list with predefined relationships between classes,in
the form “class A implies class B”. In principle, this can be
used to refine the results for class B, since clips which are
labeled as positive for class A should also be positive for
class B. However, some initial validation results suggested
this was not a good strategy, since typically the classifiersfor
the broader classes worked better than those for more specific
concepts, probably due to the availability of a larger number
of positive instances.

Therefore, we have tried quite a different approach, con-
sisting in using the output of the classifier for class B, to sort
out the first 1000 positive instances already detected for class
A. In this way, we expect that the results for class A can ben-
efit from the wider dataset used for learning concept B. We
have also established a restriction to apply the previous pro-
cedure, based on a maximum number of positive instances
in class A (i.e., we only apply the output refining procedure
when the performance of classifier A is expected to be very
poor). For instance, category “Ground Vehicles” (which has
2236 positive instances) has been used to modify the output
of “Bus” (with only 32 positive data).

Following this criterion, we modified the outputs for 24
out of the 130 categories and, among them, for 3 out of the 30



Fig. 2. Average InfAP of all our submitted runs. Results are
shown in comparison with the best performing run, median,
and25% and75% percentiles.

categories that were finally evaluated.

3.5. Runs submitted to TRECVID 2010

The combination of the above elements of the system have
provided us a set of possible runs to be submitted to TRECVID
2010, analyzing their final validation AP values, the fol-
lowing configurations have been selected for evaluation at
TRECVID:

• RUN 1 (“F A UC3M 1 1” ): the first run is the base-
line system configuration, where the local features have
been included with a Spatial Pyramid Matching scheme
and an average combination of the SVMs outputs has
been considered. No use of taxonomies has been incor-
porated into this run.

• RUN 2 (“F A UC3M 2 2” ): this run has the same con-
figuration as RUN 1, but histogram based features have
been included with a late fusion configuration.

• RUN 3 (“F A UC3M 3 3” ): this run replicates the con-
figuration of RUN 2, replacing the average late fusion
strategy by an 1-norm SVM.

• RUN 4 (“F A UC3M 4 4” ): this last run modifies the
outputs of RUN 3 for 24 classes using the available tax-
onomy.

4. PERFORMANCE EVALUATION

In this section we evaluate the performance of all four runs in
terms of InfAP. To start with, Figure 2 illustrates the achieved
InfAP averaged over the 30 high-level concepts that have been
selected (among the original 130) for its evaluation. The best
result (maximum), median and the25% and75% percentiles
are also shown in the figure as a reference for comparison.
Our submitted runs have achieved average InfAP values from

Fig. 3. InfAP of RUNS 3 and 4 over the categories where the
taxonomy has been applied. TRECVIDs 25th percentile and
median are also included for comparison.

0.0457 (RUN 1) to0.0528 (RUN 3), what places all our de-
signs in the second quartile of all TRECVID 2010 submitted
runs. To be more specific, our best performing run was ranked
24 among all87 submitted runs.

The achieved infAP results confirmed the derived hy-
potheses during the design and validation phases. The base-
line was clearly outperformed by all other designs, and in fact
the 1-norm SVM, with implicit feature selection, showed to
be much more effective than simple averaging for fusing the
ouptuts of the SVM networks. Using Spatial Pyramid Match-
ing early fusion for the local descriptors provided unsatis-
factory results, with RUN 2 already providing significantly
better performance than the baseline.

As it was expected, results from RUNS 3 and 4 did not
differ significantly, since RUN 4 only provided different out-
puts for 3 out of the 30 validated concepts. Figure 3 displays
infAP for classes “bus”, “car racing” and “throwing”. We can
see that our procedure for exploiting taxonomy gave some
improvements in two of the classes, while significantly de-
grading the recognition accuracy for the “car racing” class.
Overall, RUN 4 performed slightly worse than RUN 3 on av-
erage, but it would be interesting to study results for other
classes where the taxonomy was also exploited.

Figure 4 provides detailed information about the achieved
infAPs over the 30 evaluated concepts. We can check that
our previous discussion about the different runs is essentially
still valid when analysing each of the class separately. How-
ever, in this case we can also observe that for many of the
concepts RUN 2 actually outperformed RUN 3, which shows
that a simple average late fusion process is good enough in
many cases. Apart from this, we can also see that our designs
performance is close to the 25% percentile not just on aver-
age, but also when analyzing each of the high level concepts
individually.



Fig. 4. InfAP per class of RUNS 1, 2 and 3. TRECVIDs maximum, 25th percentile and median are also included as a reference
for comparison.

5. CONCLUSIONS

In this paper, we have presented the research work of the
UC3M team at the TRECVID 2010 semantic indexing task.
This year, the most salient novel elements in our classification
system were:

• New Local Descriptors, including also a Spatial Pyra-
mid Matching early fusion strategy

• Mixed used of the Gaussian and Histogram Intersection
Kernel (for histogram-like features)

• 1-norm linear SVM for late fusion with implicit feature
selection

• Positive items re-sorting based on the provided taxon-
omy

The submitted runs could assess the advantages of the
three first items, while the impact of taxonomy exploitationis
unclear, due to the small number of classes where this mech-
anism was implemented that were selected for the task evalu-
ation.

Our submitted runs have achieved average InfAP values
from 0.0457 (RUN 1) to0.0528 (RUN 3), what places all our
designs in the second quartile of all TRECVID 2010 submit-
ted runs, and out best performing system24 among all87
TRECVID submitted runs.
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